Produce Food Safety

Dr. Karen Killinger
Washington State University

Understand what you want to prevent

- The better we understand how pathogens function, the better we can prevent their survival and growth in our food and water
Overview

- Food Microbiology Overview
- Foodborne Disease Overview
- Produce Food Safety
- E. coli O157:H7
- Indicator Organisms
- Risk Management
- Summary

Types of Microorganisms

- Viruses
- Bacteria
- Parasites
- Mold
- Yeasts

- Hepatitis A Virus
- Salmonella
- Cryptosporidium parvum
- Sacchromyces cervisiae
Food Microbiology

- Microorganisms are present everywhere
- All raw foods contain microorganisms
- In foods, microorganisms can be
 - beneficial
 - cause spoilage
 - cause disease (pathogens)

There isn’t a direct relationship between pathogens and spoilage

- Spoiled foods may not contain pathogens
 - You don’t want to eat spoiled foods due to off-odors, off-flavors, etc.
- Foods that appear “safe” to eat may contain pathogens!
Why is food a good vehicle for pathogens?

- Foods are nutritious for microorganisms too!
- Pathogens are present at low levels in the environment and can be transferred to raw foods
- Food handling from farm to table can increase levels of contamination
- Foodborne pathogens do not discriminate based on scale of production or management practices

Frequency of Foodborne Illness (FBI) in the United States per year

- Total FBI: 76 million
- Hospitalizations: 325,000
- Deaths: 5,000
Most Susceptible Populations

- Very Young
- Very Old
- Immunosuppressed
- Pregnant Women

MythBusters: There is NO Stomach Flu!

If you think you have the “stomach flu”…
You likely have a Foodborne Illness!
Foodborne Illness: General Characteristics

- Incubation Period: 6 hours – 3 days
 - Time between ingestion and symptom onset
 - Depends on type of illness

- Types of Foodborne Illness
 - Foodborne Intoxication
 - Toxin-mediated infection
 - Foodborne Infection

Foodborne Disease: General Characteristics

- Symptoms:
 - Initial symptoms flu-like: Fever, Malaise/Fatigue, Headache, Muscle aches
 - GI symptoms: Nausea, Vomiting, Abdominal Cramps and Pain, Diarrhea

- Duration: 24 hrs – 3 days
Most Frequent Causes of Foodborne Illness in the United States

<table>
<thead>
<tr>
<th>Pathogen</th>
<th># of foodborne illnesses / year</th>
</tr>
</thead>
<tbody>
<tr>
<td>Norovirus</td>
<td>9.2 million</td>
</tr>
<tr>
<td>Campylobacter spp.</td>
<td>1.9 million</td>
</tr>
<tr>
<td>Salmonella, non-typhoidal</td>
<td>1.3 million</td>
</tr>
<tr>
<td>Clostridium perfringens</td>
<td>248,000</td>
</tr>
<tr>
<td>Giardia lamblia</td>
<td>200,000</td>
</tr>
</tbody>
</table>

Mead et al., 1999

Most deadly Foodborne Illnesses in the United States

<table>
<thead>
<tr>
<th>Pathogen</th>
<th># of deaths / year</th>
</tr>
</thead>
<tbody>
<tr>
<td>Salmonella, nontyphoidal</td>
<td>553</td>
</tr>
<tr>
<td>Listeria monocytogenes</td>
<td>499</td>
</tr>
<tr>
<td>Toxoplasma gondii</td>
<td>375</td>
</tr>
<tr>
<td>Campylobacter spp.</td>
<td>99</td>
</tr>
<tr>
<td>E. coli O157:H7</td>
<td>52</td>
</tr>
</tbody>
</table>

Mead et al., 1999
Why has addressing food safety on the farm become an area of focus?

Foodborne Pathogens & Produce

• Produce outbreaks have increased over the last 30 years

• Possibilities
 – More sophisticated detection methods
 – Increased communication of foodborne illness information among public health labs
 – Emerging pathogens
Food Safety for Raw Produce

- Most control measures reduce pathogen levels but no thermal “kill” step involved
- Steps to reduce risk from farm-to-table are available
- Every segment of the food chain must address food safety to reduce risk

Irradiation and Leafy Greens

- Irradiation for pathogen reduction approved for
 - Loose, fresh iceberg lettuce and spinach
 - Bagged, fresh iceberg lettuce and spinach
- Irradiated products retain nutrient value and are safe to eat
- Other products approved for pathogen reduction: spices, poultry & red meats, molluscan shellfish
Foodborne Pathogens and Produce

- Most common pathogens associated with foodborne outbreaks in produce:
 - *E. coli* O157:H7
 - Norovirus
 - *Salmonella*

Enterohemorrhagic *E. coli*

- Ex. *E. coli* O157:H7
- Evolved from Enteropathogenic *E. coli*
- Acquired toxin genes
 - Shiga-like toxins 1 and 2
- Virulent toxins attacks cells with specific receptors in the body
- Emerged as a foodborne pathogen in the mid 1970’s – early 1980’s
Enterohemorrhagic *E. coli* ex. *E. coli* O157:H7

- **Where does it occur naturally?**
 - GI tract of animals and man
 - Particularly ruminant animals
- **Feces contaminates environment**
 - Soil, water, farm equipment, clothes
- **Low infectious dose:** 1 – 10 cells

Enterohemorrhagic *E. coli*

- **Complications**
 - Hemolytic uremic syndrome (HUS)
 - Thrombotic thrombocytopenic purpura (TTP)
- **Most Frequent Implicated Foods** (Rangel, 2005)
 - Ground beef & beef products
 - Produce
Potential Sources of Pathogen Contamination on the farm can include:

- Contaminated Irrigation Water
- Raw or uncomposted manure
- Wild or domestic animals
- Infected workers
- Equipment
- Improper Storage
- Once produce is contaminated, difficult to remove

Spread of Contamination

- 1 gram of fecal material could contain 1,000,000 cells of *E. coli* O157:H7
- 1 gram of fecal material distributed evenly in water could contaminate 1,000 to 100,000 pieces of produce!

OSU, 2006
Pathogens & Indicator Organisms

• Pathogens are present at low levels in the environment, water and foods
 – Even at low numbers, high risk involved
 – Difficult to detect

• Indicator organisms are chosen
 – Present at higher, detectable levels
 – Indicate potential pathogen presence

Indicator Organisms

• Fecal Coliforms
 – Indicative of fecal contamination
 – Used in most states for bacterial water quality in recreational waters
 – Be aware of potential upstream influences
Indicator Organisms

• Generic *E. coli*
 – Species of fecal coliform
 – Human & animal fecal contamination
 – EPA recommendation for best indicator for recreational waters

Higher Risk Produce

• 88% of produce-related outbreaks (Anderberg, 2007)
 – Lettuce & Leafy Greens
 – Tomatoes
 – Sprouts
 – Green Onions
 – Melons
• Crops where product touches the soil
Risk Management

• There is no “silver bullet”
 – With almost any activity – there is a risk involved
 – Can’t provide “guarantees”
 – There is no “zero risk”

• All raw foods contain microorganisms
 – There is a possibility pathogens will be present

• Focus on reducing risk and managing risk

Why is Risk Management Important?

• If a food product makes someone sick – Strict Liability will likely apply
 – you are automatically liable for that illness
 – NO IF’s, THEN’s or BUT’s

• If negligence can be proven – failure to exercise reasonable care
 – punitive damages can be awarded

Marler-Clark, 2007
Produce Food Safety

- What should we tell consumers?
 - Wash produce under running water prior to preparation or serving
 - Pathogens are present at low levels in produce
 - High risk populations are at greater risk of illness from fresh produce products

Flooding

- Any product exposed to flood waters is considered adulterated by FDA and cannot enter the food chain

- Why? Not just microbial contamination…
 - Heavy Metals
 - Raw Sewage
 - Chemical Contaminants
The Silver Lining!

• Low pathogen prevalence on most foods

• Produce
 – 1.6% of domestic produce harbors pathogens
 – 4.4% of imported produce harbors pathogens

Janet Anderberg, 2007

The Good News

• For the most part, foodborne illness is preventable!

• Factors can be controlled or used to prevent microbial growth in foods!

• Preventative efforts will increase food safety
Teamwork!

• Opportunities for initial product contamination exist on the farm

• Efforts to limit contamination and bacterial growth must be coordinated from farm-to-table to prevent foodborne illness!

• Team approach

Go Cougs!

Dr. Karen Killinger
Assistant Professor
Washington State University
PO Box 646376
Pullman, WA 99164-6376
(509) 335-2970
karen_killinger@wsu.edu