Preharvest and Harvest Food Safety

Linda J. Harris, Ph.D.
Department of Food Science and Technology
Western Institute for Food Safety and Security
Western Center for Food Safety
UC Davis Freshcut Workshop 2010

Food Safety Hazards
• A
 – biological,
 – chemical, or
 – physical property
 that is reasonably likely to cause
 • cause injury or illness
 in the absence of its control

Chemical Hazards
• If not controlled will cause illness
 – Chemicals
 • Pesticides
 • Sanitizers
 – Allergens
 • Undeclared ingredients
 • Cross contaminants
 – Unapproved additives
 – Natural toxins
 • Mycotoxins
 – E.g., patulin

Physical Hazards
• Foreign objects capable of injuring the consumer
 – Metal
 – Glass
 – Wood
 – Hard plastic
 – Stones

Biological Hazards
• If not controlled will cause illness
 – Bacteria, e.g., Salmonella
 • Or their toxins
 (e.g., Clostridium botulinum toxin)
 – Viruses, e.g., hepatitis A
 – Parasites, e.g., protozoa
 • Cryptosporidium parvum

Produce Increasingly Recognized as Vector
• Proportion of reported outbreaks
 • USA
 – 1970s: <1% (outbreaks) <1% (cases)
 – 1990s: 6% (outbreaks) 12% (cases)
 • Australia
 – 4%: (2001-2005)
 • Europe
 – Increases in past decade

Lynch et al., Epidemiol. Infect. 2009
Multinational Outbreaks

<table>
<thead>
<tr>
<th>Year</th>
<th>Pathogen</th>
<th>Cases</th>
<th>Regions</th>
<th>Food</th>
</tr>
</thead>
<tbody>
<tr>
<td>2008</td>
<td>Salmonella</td>
<td>1442</td>
<td>North America</td>
<td>Fresh peppers, tomatoes?</td>
</tr>
<tr>
<td>2007</td>
<td>Salmonella</td>
<td>51</td>
<td>Europe, North America</td>
<td>Fresh basil</td>
</tr>
<tr>
<td>2007</td>
<td>Shigella</td>
<td>175</td>
<td>Australia, Europe</td>
<td>Alfalfa sprouts</td>
</tr>
<tr>
<td>2007</td>
<td>Salmonella</td>
<td>45</td>
<td>Europe</td>
<td>Alfalfa sprouts</td>
</tr>
<tr>
<td>2006</td>
<td>E. coli O157:H7</td>
<td>206</td>
<td>North America</td>
<td>Fresh spinach</td>
</tr>
<tr>
<td>2006</td>
<td>Salmonella</td>
<td>20+</td>
<td>Europe</td>
<td>Arugula</td>
</tr>
</tbody>
</table>

Lynch et al., Epidemiol. Infect. 2009

Why the increase?

- Increased consumption
 - More raw, less cooked
- Large scale production, widespread distribution
 - Increasing size of outbreak increases ability to detect
- Increase in sensitive populations
- Increase in public and scientific awareness
- Greatly improved methodology

1998 – 2006 Produce Outbreaks

Top 5 produce items make up 76% of outbreaks

- Lettuce/leafy greens: 24%
- Tomatoes: 30%
- Cantaloupe: 13%
- Herbs: 17%
- Green onion: 11%
- Other: 5%

Recurring Pathogen and Commodity Combinations

- *Salmonella* Poona and *Salmonella* Anatum
 - cantaloupes
- *E. coli* O157:H7 (other EHECs?)
 - lettuce and leafy greens
- *Salmonella*
 - mangoes, tomatoes, almonds (nuts)
- Hepatitis A
 - green onions
- *Shigella sonnei*
 - parsley, cilantro, and culantro

Do Fresh Cut Products Have Higher Risks?

1998-2006 Fresh Cut Produce Outbreaks

- Romaine lettuce: 2
- Lettuce: 6
- Mixed lettuce: 1
- Spinach: 2
- Roma Tomatoes: 2
- Round Tomatoes: 1
- Mixed melons: 1
Recent Outbreaks Have Caused Major Changes in Attitudes and Approaches to the Safety of All Perishable Produce

In the U.S., since 1999, 80% of leafy green outbreaks and 98% of illnesses have been from fresh-cut products.

Survival/Growth of Pathogens in Produce

- Intact fruit/vegetable
 - Survival variable, growth rare
- Cut/wounded fruit/vegetable
 - Survival increases and growth possible
- Temperature
 - Growth slowed at lower temperatures
 - SURVIVAL often increases at lower temperatures
- Humidity
 - Growth and survival enhanced with higher humidity

Growth of Pathogens in (cut) Produce

- High pH/low acid products:
 - Growth can be rapid at room temperature
 - examples: sprouts, cut melons, chopped parsley, chopped lettuce, shredded carrots
- Low pH/high acid products
 - Tomatoes: Under some conditions, chopped tomatoes will support the growth of Salmonella
 - Apples: Wound will support the growth of E. coli O157:H7

Innovative Packaging

- Longer shelf life due to suppression of spoilage organisms and physiological degradation
 - Modified atmosphere packaging
 - Vacuum packaging
 - Shrink-wrap packaging
 - Customized films
 - Controlled atmosphere storage

Toxin Production by Clostridium botulinum

<table>
<thead>
<tr>
<th>Product</th>
<th>Temp.</th>
<th>Days to Toxin</th>
<th>Product Quality</th>
</tr>
</thead>
<tbody>
<tr>
<td>Romaine</td>
<td>21</td>
<td>14 to 21</td>
<td>Inedible</td>
</tr>
<tr>
<td>Shredded cabbage</td>
<td>21</td>
<td>7</td>
<td>Inedible</td>
</tr>
<tr>
<td></td>
<td>22 to 25</td>
<td>4 to 6</td>
<td>Acceptable</td>
</tr>
<tr>
<td>Sliced potatoes</td>
<td>22</td>
<td>3</td>
<td>Marginal</td>
</tr>
<tr>
<td>Sulfitated potatoes</td>
<td>22</td>
<td>4</td>
<td>Acceptable</td>
</tr>
</tbody>
</table>

Contamination/Handling Errors

- Have occurred at:
 - Production
 - Packing
 - Processing
 - Final preparation
- Contamination MOST important factor
- Temperature abuse SOMETIMES contributes
 - Most critical in low-acid fruits and vegetables
 - Pathogens can multiply when fruit or vegetable cut
 - Only critical with bacteria
Washing Doesn’t Eliminate Pathogens

- At best 1-3 log (1 to 1000-fold) reductions can be expected under commercial conditions regardless of antimicrobial used

- Issues
 - Complexity
 - Stem scar area
 - Apples
 - Bacteria can enter core through blossom end
 - Stem end difficult access
 - Presume knife can transfer to edible flesh
 - Demonstrated for melons and tomatoes

Infiltration Can Occur in Some Products

- Fruit pulp must be < 9°F warmer than water temperature to prevent infiltration.

Not all surfaces equal

- Smooth surfaces
 - Honeydew melon, tomato, oranges, apples

- Complex surfaces - hard
 - Netted rind difficult to “clean”
 - Scrubbing with clean brush significant improvement

- Complex surfaces - soft
 - Strawberries, broccoli, lettuce, parsley, sprouts

Some surfaces may attract bacteria

- Lettuce
 - *E. coli* O157:H7 found in cut edges and stomata (Seo and Frank, 1999)
 - *L. monocytogenes* and *Salmonella* attach to cut edges (Takeuchi et al., 2000)

Guiding Principles of Food Safety for Fresh Produce

- Once contaminated, removing or killing pathogens is VERY difficult

 THEREFORE

- Prevention of contamination is favored

GAPs and GHPs ARE Science-based

- Guidance derived from sound principles
- Data is lacking in many areas
- Specific practices and standards may
 - have no *validated* basis
Good Agricultural Practices
Now Incorporate More Specific “Metrics”:
Criteria for Compliance Audits

- Quantifiable and verifiable criteria
- Improve public safety by applying uniform science-based standards

Leafy Green Marketing Agreement
- Accepted More Specific and Prescriptive “Metrics”
- Voluntary Program; Mandatory Government Audits

FDA Produce Safety Rule
- The Food and Drug Administration is proposing to promulgate regulations setting enforceable standards for fresh produce safety at the farm and packing house.
- Intention to publish a proposed rule in 2011

What are the sources of contamination?

Enteric (Fecal) Pathogens (partial list)

<table>
<thead>
<tr>
<th>Pathogen</th>
<th>Enteric Source</th>
<th>Infectious Dose</th>
<th>Sequela</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bacteria</td>
<td>human</td>
<td>10 - 1,000</td>
<td>Reactive arthritis</td>
</tr>
<tr>
<td>Salmonella</td>
<td>human</td>
<td>10 - 1,000</td>
<td>HUS</td>
</tr>
<tr>
<td>E. coli O157:H7 (EHEC)</td>
<td>human</td>
<td>10 - 100</td>
<td>Dysentery</td>
</tr>
<tr>
<td>Shigella</td>
<td>human</td>
<td>10 - 100</td>
<td>Dysentery</td>
</tr>
<tr>
<td>Protozoa</td>
<td>human</td>
<td><20</td>
<td>Severe diarrhea</td>
</tr>
<tr>
<td>Hepatitis A</td>
<td>human</td>
<td>10 - 100</td>
<td>Jaundice</td>
</tr>
</tbody>
</table>

Routes of Contamination

- Plants
- Silage, feed
- Meat, milk, eggs
- Soil (cross contamination)
- Water
- Animals, birds
- Produce
- Humans
GAPs Metrics

- Mandatory Good Agricultural Practices (GAPs) developed by a panel of industry members, academics and scientists
 - Represent the best practices available
 - Flexible enough to evolve over time as science advances
 - Target water and inputs, wildlife and worker hygiene

Metrics

- Adjacent land use
- Distance from animal operations
- Water and water testing
- Application/testing of compost
- Sanitary facilities and worker training

Implementing GAPs

Step 1: Construct a Self-Audit of Potential Hazards

- Site selection
- Animal influences
- Fertility inputs
- Water inputs
- Irrigation
- Foliar sprays
- Harvest
- Human influences
- Worker hygiene
- Postharvest water and handling
- Sanitation – field and equipment

Best Practices: Site Selection

How far from an identified hazard?

Best Practices: Irrigation Water

Water Source

- Known
- Impaired
- Purified

How do you define water quality?

- Indicator threshold
- Pathogen testing
- Treatment

Best Practices: Irrigation Water

Water Source

- Oso Ranch 1 Block 2
- Baby Spinach Land Prep
- Pest Control
- Irrigation
- Packing

What factors should influence acceptability?

- Method of irrigation
- Type of crop
- Contact with edible portion
- Crop habit and surface morphology
- Cropping cycle
- Climate and microclimate
- Timing of last irrigation to harvest
Best Practices: Site Selection

What factors should influence acceptability?

- Slope
- Soil porosity
- Prevailing wind
- Presence of vectors
- Method of irrigation
- Crop habit + morphology
- Season
- Mitigation practices

E. coli O157:H7 Outbreak Associated with Bagged Lettuce (Taco Johns) (December 2006)

- 81 cases of E. coli O157 infection in three states
 - 2 cases of HUS, 26 hospitalizations
- Implicated vehicle – Bagged, fresh-cut lettuce
 - Grown in California’s Central Valley
 - Outbreak E. coli O157:H7 strain isolated from 2 environmental samples from 2 dairy farms near lettuce-growing area
- Irrigation water cross-linked to dairy waste water used to irrigate animal food crops
 - the farm irrigation system that utilized dairy runoff water did not have any backflow prevention devices to ensure manure-blended irrigation water did not contaminate the SWSD water system,” which was used to irrigate lettuce fields

E. coli O157:H7 Outbreak 2006
Bagged Fresh Spinach

- 45 of 351 (13%) of environmental samples in and around the Ranch were E. coli O157:H7-positive
 - Outbreak strain of E. coli O157 confirmed from 26 of 45 E. coli O157:H7-positive samples
 - These were from cattle feces (15 samples), wild pig (7 samples), stream water (2 samples) and soil (2 samples)

Human isolates of non-O157 STEC, by serogroup, FoodNet sites, 2000-2006

(Bar chart showing serogroups and their percentage) N=575 isolates* 42 serogroups 1.2% each

Source: CDC 2008

Best Practices: Animal Intrusion

<table>
<thead>
<tr>
<th>Observed fecal matter</th>
<th>Ignored as natural</th>
<th>Segregate 5 ft area</th>
<th>Reject whole field</th>
</tr>
</thead>
</table>

Significant Animal
- Cattle
- Pig
- Deer
- Goat
- Sheep

Non-Significant Animal
- Coyote
- Fox
- Dog
- Cat
- Horse
- Rabbit
- Raccoon
- Birds
- Chickens
- Reptiles
- Amphibians
- Other

LGMA Standards recognize level of concern and required corrective action
Human hygiene

Humans are involved
- training and implementation issues

GAPs Programs Should Not Be Passive

Develop a system that can:
- Determine what could have happened;
- Implement procedures to determine when the process is out of control;
- Implement control measures to correct the problem;
- Verify;
- Record all actions that have been done

Key Take-Home Messages

- Illness is the vastly exceptional outcome
- Diverse produce consumption is the right health message for a balanced diet